
TeraFAST software. C API reference

Terasense Group, Inc
21143 Hawthorne Blvd., #459, Torrance, CA 90503, USA

April 8, 2016

Contents

1 Directory content 2

2 Introduction 2

3 Reference 3
3.1 Types . 3
3.2 Variables . 3
3.3 Constants . 3
3.4 Return codes . 4
3.5 Functions . 4

4 Samples 6

1

1 Directory content

dlls\
libterafast.dll DLL files for the TeraView library and driver

support software. Any software will depend on
these DLLs.

okFrontPanel.dll
driver\

FrontPanelUSB-DriverOnly-4.4.0.exe Device driver. Needs to be installed on the PC which
would work with the device.

inc\
libterafast.h Header file for the TeraView library.

lib\
libterafast.lib Import library file for the TeraView library.

sample\
sample.c Source file for the simplest sample program.
sample.vcxproj Visual Studio project for the simplest sample pro-

gram.
Terasense Samples.sln Visual Studio solution for the sample projects.

2 Introduction

The TeraView library provides C interface for developing programs for Terasense imaging devices models Ter-
aFAST, and their custom modifications. It is compiled for Win32 platform and should work for Windows 7 and
above. In order to use library you need to include header file found in inc\ folder, link to import library file
found in lib\ folder and put both DLL files found in dll\ folder within the search path (for example, in the same
folder as your executable). You also need to install device driver found in driver\ folder (if you use Terasense
Software on this computer, the driver is already installed).

The operation is started by initialization of the device (tfInit()). During this process a connection with the
device is established, configuration data is read, and parameter variables are set. Next data acquisition is started
(tfStart()). This step creates internal thread that constantly reads data from the device, process them, and
stores result in internal buffer. Read operation tfRead() reads data from the internal buffer into preallocated
buffer provided by you (use (TF DATA) malloc(dataLength*sizeof(TF ELEMENT)). It is guaranteed than the
same data are never read twice and if there is no new data yet, the function blocks until they are available.

The data are read by frames with the width frameSize, which is determined by the parameters of your
device and the length frameLength, which can be set using tfSetFrameLength() function (before the acquisition
commences). The data are stored in the buffer line by line, earlier lines first. The rate of the line aquisition can
be set by tfSetPeriod() or tfSetRate(), the latter is provided for convinience. Note that this is line acquisition
rate, the frame rate would be frameLength times slower.

Data processing includes two steps: substracting backgound data and normalizing data. At the initial-
ization device uses factory calibration (background and normalization), but you can record a new one using
tfRecordBackground() and tfRecordNormalization() functions or load previously saved one using tfLoadCon-
fig(). The normalization always contains two sets of data — default and recorded. Default never changes,
tfRecordNormalization() replaces recorded set; if you’ve never used this function, the recorded data coincide
with the default.

To free resources, call tfStop() when you do not need data, and tfClose() to free the device.

2

3 Reference

3.1 Types

typedef signed int16 TF ELEMENT
Type for a single data point.

typedef TF ELEMENT * TF DATA
Pointer to a buffer containing data points of a frame.

typedef int TF RES
Type for return codes for functions in the library.

typedef int (*TF ticker t)(double completion)
Type for a ticker callback function being used by tfRecordBackground() and tfRecordNormalization().
Completion parameter varies from 0 (just started) to 1 (finished). The function should return FALSE by
default and TRUE to request abort of the operation.

3.2 Variables

Variables are undefined before the initialization (see tfInit()). All variables are read-only, attempts to assign a
new value will lead to crash!

int frameSize Dimension of the sensor.

int frameLength Length of a frame.

int dataLength Total number of data points in a frame (dataLength = frameSize ∗ frameLength).

char deviceIDstring[32] Identification string for the device.

3.3 Constants

TF MAX VALUE 32767
Maximum value for a data point.

TF DEFAULT PERIOD 200
Default value for the time between data point (in microseconds).

TF DEFAULT FRAMELENGTH 64
Default value for the length of a frame.

TF MAX FRAMELENGTH 4096
Maximal value for the length of a frame.

TF DEFAULT THRESHOLD 10
Default value for the threshold.

3

3.4 Return codes

Name Value Description
TF OK 0 Success.
TF FAILED -9999 General failure.
TF CANCELLED -9998 Cancelled by user.
TF ERR WRONG PARAMETERS -9997 Invalid parameters (out of range, too long or too

short, etc.).
TF NOTRUNNING -9996 Data acquisition have not been started. (Use tfS-

tart()).
TF ERR SIZE MISMATCH -9995 Imported data does not fit current configuration.
TF OUTPUT ERROR -9994 File write operation failed.
TF INPUT ERROR -9993 File read operation failed.
TF NOTCONFIGURED -9992 Initialization have not been performed or device have

been closed. (Use tfInit()).
TF ERR RUNNING -9991 Requested operation cannot be performed while data

acquisition is running. (Use tfStop()).

3.5 Functions

TF RES tfInit(void);
Initialize the device. This function should be called prior to any operation with the device, which have
to be connected to the computer. It performs initialization and sets variables frameSize, frameLength,
dataLength, and deviceIDstring.

TF RES tfClose(void);
Close the device. Device can be initialized again by calling tfInit().

TF RES tfStart(void);
Starts data acquisition and processing. The acquisition and processing are performed continuously in
separate threads and results are stored in internal cyclic buffer.

TF RES tfStop(void);
Stops data acquisition and processing, joining corresponding threads. It can take as long as one frame
period at current exposure to return.

int tfIsRunning(void);
Checks whether the acquisition is running. Returns 0 (false) or -1 (true).

TF RES tfRead(TF DATA buffer);
Reads processed data into the buffer (the buffer of the size dataLength ∗ sizeof(TS ELEMENT) must
be allocated beforehand!). Returned data are between 0 and TF MAX VALUE.
If there are no new data, the function will block until they become available. If acquisition have not been
started, the function will return TF NOTRUNNING.

TF RES tfReadRaw(TF DATA buffer);
Reads raw (unprocessed) data into the buffer (the buffer of the size dataLength∗sizeof(TS ELEMENT)
must be allocated beforehand!). No background compensation and calibration is applied. Returned data
are approximately between TF RAW LIMIT−TF MAX VALUE and TF RAW LIMIT.

4

If there are no new data, the function will block until they become available. If acquisition have not been
started, the function will return TF NOTRUNNING.

TF RES tfSetFrameLength(int length);
Sets the number of lines in a single frame. This function can only be used when acquisition is not running.
After using this function you’ll need to adjust the size of the buffer.

int tfGetFrameLength(void);
Reads the number of lines in the current frame.

TF RES tfSetPeriod(int period);
Set the time period between lines in microseconds. Admissible range can be found using tfGetPerio-
dRange(). If the parameter is out of range an error is returned.

TF RES tfSetRate(double rate);
Set the acquisition rate in lines per second (note that this is line acquisition rate, frame rate is frame-
Length times slower). This is a helper function for SetPeriod(), the actual rate will be a rounded value
corresponding to the nearest integer period.

int tfGetPeriod(void);
Returns the time period between lines in microseconds.

double tfGetRate(void);
Returns the acquisition rate in lines per second.

TF RES tfGetPeriodRange(int * min, int * max);
Provides admissible range for the period value.

TF RES tfSetDifference(int on);
Turns on/off difference mode. Non-zero value of parameter will turn it on, zero will turn it off.

TF RES tfRecordBackground(TF ticker t callback);
Records background compensation data. The radiation source should be off. The data are recording can
take some time, depending on acquisition rate. The parameter is a pointer to callback function which is
called periodically to indicate progress. Return value of this function can be used to cancel the process.
Set the parameter to NULL to prevent callbacks.
The recorded data are applied automatically and replace default during the session, to use them in
subsequent sessions you need to save and then load config.

TF RES tfRecordNormalization(TF ticker t callback);
Records normalization data. The radiation source should be on and it is advisable to record background
data beforehand. The data are recording can take some time, depending on acquisition rate. The param-
eter is a pointer to callback function which is called periodically to indicate progress. Return value of this
function can be used to cancel the process. Set the parameter to NULL to prevent callbacks.
The recorded data are NOT applied automatically. In order to apply them, use tfSelectNorm(1). To use
the recorded data in subsequent sessions you need to save and then load config.

TF RES tfSelectNorm(int i);
Selects nomaliztion (0 - default, 1 - recorded). In the default configuration recorded normalization coincides
with the default.

5

TF RES tfSaveConfig(FILE *stream);
Saves calibration data (i.e. background and normalization data) to file. The parameter should be a binary
stream opened for writing.

TF RES tfLoadConfig(FILE *stream);
Reads calibration data (i.e. background and normalization) from file. The parameter should be a binary
stream opened for reading. The data read replace default during the session.

TF RES tfSetThreshold(double threshold);
During normalization recording process SNR for the pixels is calculated. Pixels with SNR below a certain
level are marked as non-performing and their data are replaces by zeros when using the recorded normal-
ization data. This function sets the corresponding threshold.
If argument is below 1, the TF DEFAULT THRESHOLD is used.

4 Samples

For the expample of a simplest program see included ’sample’ project.

6

	Directory content
	Introduction
	Reference
	Types
	Variables
	Constants
	Return codes
	Functions

	Samples

