
TeraFAST software. Python API reference

Terasense Group, Inc
21143 Hawthorne Blvd., #459, Torrance, CA 90503, USA

October 17, 2018

Contents

1 Installation 2

2 Overview 3

3 Module teraFAST.processor 4
3.1 Methods . 4

3.1.1 Main . 5
3.1.2 Acquisition settings . 6
3.1.3 Background and normalization-related . 7
3.1.4 Processing . 9

3.2 Properties . 11
3.2.1 General . 11
3.2.2 Multi-threading . 11

4 Module teraFAST.worker 12
4.1 Methods . 12
4.2 Properties . 14

5 Examples 15
5.1 The simplest program . 15
5.2 A multithreaded version using callbacks . 15
5.3 Image generation . 16
5.4 Use of background and normalization . 17

1

1 Installation

TeraFAST software is a http://www.python.org/ package. It requires Python and the following extension
modules to be installed:

• Python 2.7.15 http://www.python.org/download/

• NumPy 1.14 http://www.numpy.org/

• OpenCV 3.4 http://opencv.org with Python bindings

• wxPython 4.0 http://www.wxpython.org

• Pyserial 3.4 http://sourceforge.net/projects/pyserial/files/

It also depends on http://www.microsoft.com/en-us/download/details.aspx?id=5555
Installers for all required software are provided in the default installation package. Download it from the

provided link, unzip it to a temporary folder, and execute install.bat script by double-clicking it in Windows
Explorer. It will run all necessary installers for you. Install all packages with default settings, agreeing to EULA
where required.1

TeraFAST software currently won’t work with Python 3.x. However, if you use Python 3.3 or newer, you
can seamlessly install Python 2.7 alongside Python 3.x (see http://www.python.org/dev/peps/pep-0397/ for
additional information).

1By default most of the stuff will be installed to the folder C:\Python27\ and take about 180 MB of the disk space. If you want
to change the location, you should do that in the very first installer to run, the one for the Python itself. Destinations for all other
packages will be changed accordingly.

2

http://www.python.org/download/
http://www.numpy.org/
http://opencv.org
http://www.wxpython.org
http://sourceforge.net/projects/pyserial/files/
http://www.python.org/dev/peps/pep-0397/

2 Overview

Two main modules are supplied in the teraFAST package, teraFAST.processor and teraFAST.worker. The
first provides processor class for data acquisition and basic processing (including background compensation and
normalizaion); the second one provides Worker class, which can be used to convert data to a RGB image.

teraFAST.processor module works by spawning a separate process for asynchronous data acquisition using
Python’s multiprocessing module, while data processing is running in parallel in its own thread using Python’s
threading module. The process and the thread are created when acquisition is started and destroyed when it is
stopped so that computer resources are not spent unnecessary.

Data processing consists of two main parts — background compensation and normalization. It is performed
within teraFAST.processor module.

By default, background data are read from a device-specific config file. They can be re-recorded and it should
be done if external temperature is changed. Obviously, incoming radiation should be switched off. Normalizaion
data are read from the same config file and stored in a dictionary; there is a default set, supplied from the factory,
but you can record your own (which will be stored under the label ”recorded”) to take into account distribution
of the incoming radiation and effectively flatten the field. Pixels that produce too low signal-to-noise ratio
during recording (either due to defect or to being in a dark spot) are marked as non-performing (the threshold
separating performing from non-performing pixels can be changed after the recording). Readouts from non-
performing pixels are substituted by zeros.

3

3 Module teraFAST.processor

class teraFAST.processor.processor([threaded, config, defaults, flags])
This class provides main data acquisition and processing capabilities.

Parameters:

threaded deprecated (boolean, default: True)

config path to a configuration file containing background and normalization data (default:None)

defaults path to a file with auxilliary default settings (default:None)

flags data processing flags (default: teraFAST.processor.DEFAULT FLAGS)

Data processing flags:

DIFFERENCE turn on the difference mode

DEFAULT FLAGS default value, equivalent to none, 0x0.

3.1 Methods

The module provides methods in several groups:
Main:

• start([callback, errorcallback, resume])

• stop([join])

• read()

• read raw()

Acquisition parameters:

• SetFrameLength(value)

• SetRate(rate)

• GetRate()

• GetRateRange()

• SetDifference([on])

Background and normalization:

• SetBG(data)

• SelectBG(val)

• SetNorm([data, mask])

• GetNormList()

4

• SelectNorm([val])

• GetSelectedNorm()

• LoadConfig([zipName])

• SaveConfig(filename)

• RecordBG([count, callback])

• RecordNorm([count, callback])

Processing

• SetThreshold(val)

• GetThreshold()

• SetAccumulation([on])

• SetAccuLength(val)

• GetAccuLength()

• ResetAccumulation()

3.1.1 Main

start([callback, errorcallback, resume])
Starts acquisition process and corresponding threads. Callback and errorcallback are functions that should
be called when new data became available or an error occurs.

Parameters:

callback a target to be called on each aquisition cycle as callback(data), where data is a numpy.ndarray
containing processed data within [0,1] interval (Notice, that data may be None if the data queue
is empty for too long). Callback function is executed in the same thread as data processing,
it should return False during normal operation and True if acquisition should be aborted
(default: None);

errorcallback a target to be called in case of an error as errorcallback(error, critical), where error
is an instance of Exception, and critical is a boolean value indicating wheather operation should
be stopped or may continue (default: None);

resume if True and callback is None the value of callback from previous call to this function will
be used (default: False).

Returns:

None

stop([join])
Stops acquisition and processing threads. If acquisition is not running it has no effect.

Parameters:

5

join if True, it will try to join acquisition and processing threads, possibly causing delay. (default:
True).

Returns:

None

read()
Reads processed data. The method will work only if acquisition have been started using start , otherwise
it will return None. This method will not read the same frame twice and it will block if the new frame is
not available yet.

Returns:

data numpy.ndarray containing processed data within [0,1] interval.

read raw()
Reads raw unprocessed data. If processor instance have been created in a multi-threaded mode, the
method will work only if acquisition was started using start , otherwise it will return None. This method
is not intended for end-user.

Returns:

data numpy.ndarray containing unprocessed data within [-32768, 32767] .

3.1.2 Acquisition settings

SetFrameLength(value)
Sets length (number of lines) in a frame that is returned by read() and read raw().

Parameters:

value new value for the frame length (integer, value> 1).

None

SetRate(rate)
Changes current acquisition rate.

Parameters:

rate new rate value, lines per second.

Returns:

err If acquisition is not running returns None for success or Exception instance for failure; If
acquisition is running always returns None and in case of failure errorcallback() is called by
the processing thread.

GetRate()
Gets current acquisition rate.

Returns:

6

rate The acquisition rate, lines per second. The return value may differ from the one used at
SetRate() due to rounding errors.

GetRateRange()
Gets admissible rate range.

Returns:

(min, max) a tuple with minimal and maximal rate values, lines per second.

SetDifference([on])
Turns the difference mode on or off.

Parameters:

on True to turn on, False to turn off (default: True).

Returns:

None

3.1.3 Background and normalization-related

SetBG(data)
Sets data as current backgound data to be used in processing.

Parameters:

data numpy.ndaray with data to be used as a background data. If it is None, empty array is used
(i.e. no background compensation is performed).

Returns:

None

SelectBG(val)
Selects a background data from existing list. The data are set as current backgound data to be used in
processing.

Parameters:

val index of the data in the list (currently only 0 is a valid choice); if it is out of range, empty
array is used.

Returns:

None

GetSelectedBG()
Gets index of a currently selected background data within the list.

Returns:

idx index of a currently selected background; None if no background compensation is performed.

7

SetNorm([data, mask])
Sets current normalization data to be used in processing.

Parameters:

data numpy.ndaray with data to be used for normalization. If it is None, empty array is used (i.e.
no normalization is performed).

mask numpy.ndaray with corresponding mask data to be used for normalization. If it is None, all
pixels are assumed to be good.

Returns:

None

SelectNorm([val])
Selects normalization from the dictionary by the key (either ”default”, ”recorded”, or None)

Parameters:

val key value. If the key is None or does not exists normalization is switched off.

Returns:

key value of the key on success or None otherwise.

GetNormList()
Gets a list of normalizations as dictionary. It includes all possible keys and boolean values indicate whether
the corresponding normalizaion is available at the moment.

Returns:

dict dictionary of a form {”default”: True— False, ”recorded”: True— False}

GetSelectedNorm()
Gets key for currently selected normalization.

Returns:

key key for the currently selected normalization (”default” or ”recorded”) or None if none is
selected.

LoadConfig([zipName])
Loads previously saved background and normalization data from a configuration file and puts them into
the corresponding list and dictionary.

Parameters:

zipName filename for a configuration file. If it is not provided, default configuration file is loaded.
If it is a relative path, it is relative to the module folder.

Returns:

None

8

SaveConfig(filename)
Saves complete list of backgrounds and normalization data dictionary to a configuration file to be loaded
later.

Parameters:

filename filename for a configuration file. If it is a relative path, it is relative to the module folder.

Returns:

None

RecordBG([count, callback])
Record background data for all available exposures and places them into the background list.

Parameters:

count number of repetitions used for averaging. If 0 or not provided, then default value is used
(30, may be changed in defaults file).

callback callback to indicate progress. It is called with completed percentage and it is expected
to return tuple (continue, skip), where continue is True unless the process should be aborted
(see wx.ProgressDialog from wxPython package).

Returns:

success True if completed successfully, False if canceled.

RecordNorm([count, callback])
Record normalization data and put them into the normalization dictionary under ”recorded” key.

Parameters:

count number of repetitions used for averaging. If 0 or not provided, then default value is used
(30, may be changed in defaults file).

callback callback to indicate progress. It is called with completed percentage and it is expected
to return tuple (continur, skip), where continue is True unless the process should be aborted
(see wx.ProgressDialog from wxPython package).

Returns:

success True if completed successfully, False if canceled.

3.1.4 Processing

SetThreshold(val)
Set threshold value for the signal-to-noise ratio to declare pixels unusable with recorded normalization.

Parameters:

val new value for threshold (default: 10.0, may be changed in defaults file; invalid values less than
1 defaults to 10).

Returns:

9

None

GetThreshold()
Returns current threshold value.

Returns:

val current threshold value.

SetAccumulation([on])
Turns accumulation on or off.

Parameters:

on True to turn on, False to turn off (default: True).

Returns:

None

SetAccuLength(val)
Sets accumulation length (window size for time-domain filtering).

Parameters:

val accumulation length (coerced to [1,100]).

Returns:

None

This method does not turn accumulation on! Use SetAccumulation().

GetAccuLength()
Returns current accumulation length (window size for time-domain filtering). Result does not depend on
whether the accumulation is on or off.

Returns:

val current accumulation length.

ResetAccumulation()
Resets accumulated data (i.e. starts accumulation anew).

Returns:

None

10

3.2 Properties

3.2.1 General

X SIZE X dimension of the sensor array (integer, read-only).

Y SIZE Y dimension of the sensor array (integer, read-only).

bgList background list containing background information for each available exposure. Each item is an instance
of teraFAST.ref.RefData. See SelectBG, GetSelectedBG, LoadConfig, RecordCurrentBG, RecordBG meth-
ods.

normDict normalization dictionary containing normalization information. By default it contains ”default” and
”recorded” keys (with values possibly being None). Each item is an instance of teraFAST.ref.RefData.
See GetNormList, SelectNorm, GetSelectedNorm, LoadConfig,

RecordNorm methods.

3.2.2 Multi-threading

Generally, it is recommended to use either callback of the start method or read method to get access to the
data in multi-threaded mode. However, if you want to have a direct access, here are several properties to do
that.

result numpy.ndarray with the shape (X SIZE, Y SIZE), which contains processed data during multi-threaded
operation.

datalock instance of threading.Lock(). Acquire it if you access result property directly.

ready instance of threading.Event(). It is set when result property is renewed.

11

4 Module teraFAST.worker

class teraFAST.worker.Worker(size, [flags])
This class provides means for converting data array to an image with some additional processing. It relies
on Numpy and OpenCV.

Parameters:

size a tuple with dimensions of the imag/data array (width, height)

flags processing flags (default: teraFAST.processor.DEFAULT FLAGS)

Data processing flags:

FALSECOLOR produce image in false colors (rainbow) instead of b/w (tinted)

SMOOTH smooth image (space-domain filtering)

NEGATIVE invert image

MEDIAN use median filtering instead of gaussian blurring for smoothing

MIRROR mirror the image

DEFAULT FLAGS default value, equivalent to FALSECOLOR|SMOOTH

4.1 Methods

The module provides the following methods:

• makeImg(data)

• SetBrightness(black,white)

• SetContrast(black,white)

• SetGamma(val)

• SetSmoothness(val)

• GetSmoothness()

• data2RGB(data)

makeImg(data) Generates image from data according to the current settings.

Parameters:

data input data (one-channel [0,1] array of floats).

Returns:

img three-channel RGB image.

SetBrightness(black,white) Sets brightness using black and white points.

Parameters:

12

black black point value in [0, white)

white white point value in (black, 1]

Returns:

None

SetContrast(black,white) Sets contrast using black and white points.

Parameters:

black black point value in [0, white)

white white point value in (black, 1]

Returns:

None

SetGamma(val) Sets gamma value.

Parameters:

val gamma value (gamma ¿ 0).

Returns:

None

SetSmoothness(val) Sets smoothness parameter.

Parameters:

val smoothness parameter (0, 100]. For gaussian blur smoothing it is the standard deviation ×100,
for median smoothing it sets 3× 3 kernel if val ≤ 50 and 5× 5 kernel otherwise.

Returns:

None

GetSmoothness() Gets smoothness value.

Returns:

val value of the smoothness parameter (0, 100]

data2RGB(data) Converts one-channel BW data to three-channel RGB data, output depends on the presense
of FALSECOLOR flag in processFlags property. Parameters:

data input data (one-channel [0,1] array of floats).

Returns:

img three-channel RGB image.

13

4.2 Properties

processFlags mask, which defines processing options according to data processing flags (see description
of the constructor). It may be changed at any time.

brightness brightness parameter, float, possible values in [−1, 1] range.

contrast contrast parameter, float, possible values in (0, inf) range.

size tuple with 2D dimensions of the data (width, height) (read-only).

14

5 Examples

5.1 The simplest program

Data acquisition from the camera is performed in a separate thread. You need to start acquisition explicitly,
otherwise read() would return None.

from teraFAST import processor as tp

def main():

frameLength = 256 #number of lines returned per frame

source = tp.processor(rows=frameLength)

#You need to start data acquisition explicitly

source.start()

for i in range(100):

data = source.read()

#do something with data

print data.shape

#Call stop() to stop acquisition and join the acquisition and processing thread

source.stop()

if __name__ == ’__main__’:

main()

5.2 A multithreaded version using callbacks

from teraFAST import processor as tp

import time

count = 0

def callback(data):

global count

if data is not None:

#do something with data

print count, data.shape

else:

print "Data queue is empty."

count +=1

if count >= 100:

you may stop acquisition by returning True from the callback (instead of calling processor.stop())

return True

def main():

15

frameLength = 256 #number of lines returned per frame

source = tp.processor(rows=frameLength)

#You need to start data acquisition explicitly

source.start(callback)

Sleep for some time or do something while acquisition is going on

time.sleep(3)

time.sleep(10)

#stop() function should be called from the main thread, not from the callback

source.stop()

if __name__ == ’__main__’:

main()

5.3 Image generation

from teraFAST import processor as tp

from teraFAST import worker as tw

def main():

frameLength = 256 #number of lines returned per frame

source = tp.processor(rows=frameLength)

convert = tw.Worker(size = (source.X_SIZE,source.Y_SIZE))

#You need to start data acquisition explicitly

source.start()

for i in range(100):

data = source.read()

img = convert.makeImg(data)

#do something with image

print img.shape

#Call stop() to stop acquisition and join the acquisition and processing thread

source.stop()

if __name__ == ’__main__’:

main()

16

5.4 Use of background and normalization

from teraFAST import processor as tp

from teraFAST import worker as tw

def ticker(progress):

"""Progress indicator. To abort process, return (False, False) tuple. """

if progress < 100:

print ".",

else:

print " "

return (True, False)

def main():

frameLength = 256 #number of lines returned per frame

source = tp.processor(rows=frameLength)

raw_input("Prepare to record background. Switch off incoming radiation and press Enter")

Background is recorded.

source.RecordBG(callback = ticker)

raw_input("Prepare to record normalization. Switch on incoming radiation and press Enter")

Normalization is recorded. The recorded normalization is automatically selected.

source.RecordNorm(callback = ticker)

You may want to use SaveConfig/LoadConfig to avoid repeating recording background/normalization procedure.

#You need to start data acquisition explicitly

source.start()

for i in range(100):

data = source.read()

#do something with image

print data.shape

#Call stop() to stop acquisition and join the acquisition and processing thread

source.stop()

if __name__ == ’__main__’:

main()

17

	Installation
	Overview
	Module teraFAST.processor
	Methods
	Main
	Acquisition settings
	Background and normalization-related
	Processing

	Properties
	General
	Multi-threading

	Module teraFAST.worker
	Methods
	Properties

	Examples
	The simplest program
	A multithreaded version using callbacks
	Image generation
	Use of background and normalization

