
Terasense software. C API reference

Terasense Group, Inc
21143 Hawthorne Blvd., #459, Torrance, CA 90503, USA

July 18, 2016

Contents

1 Directory content 2

2 Introduction 2

3 Reference 3
3.1 Types . 3
3.2 Variables . 3
3.3 Constants . 3
3.4 Return codes . 4
3.5 Functions . 4

4 Samples 6

1

1 Directory content

dlls\
libteraview.dll DLL files for the TeraView library and driver

support software. Any software will depend on
these DLLs.

okFrontPanel.dll
driver\

FrontPanelUSB-DriverOnly-4.4.0.exe Device driver. Needs to be installed on the PC which
would work with the device.

inc\
libteraview.h Header file for the TeraView library.

lib\
libteraview.lib Import library file for the TeraView library.

sample\
sample.c Source file for the simplest sample program.
sample.vcxproj Visual Studio project for the simplest sample pro-

gram.
simple App\

simple App.c Source file for a simple application.
simple App.vcxproj Visual Studio project for a simple application.

Terasense Samples.sln Visual Studio solution for the sample projects.

2 Introduction

The TeraView library provides C interface for developing programs for Terasense imaging cameras models Tera-
1024, Tera-256, and their custom modifications. It is compiled for Win32 platform and should work for Windows
7 and above. In order to use library you need to include header file found in inc\ folder, link to import library
file found in lib\ folder and put both DLL files found in dll\ folder within the search path (for example, in
the same folder as your executable). You also need to install device driver found in driver\ folder (if you use
Terasense Software on this computer, the driver is already installed).

The operation is started by initialization of the device (tsInit()). During this process a connection with the
device is established, configuration data is read, and parameter variables are set. Next data acquisition is started
(tsStart()). This step creates internal thread that constantly reads data from the device, process them, and
stores result in internal buffer. Read operation tsRead() reads data from the internal buffer into preallocated
buffer provided by you (use (TS DATA) malloc(dataLength*sizeof(TS ELEMENT)). It is guaranteed than the
same data are never read twice and if there is no new data yet, the function blocks until they are available.

Data processing includes three steps: substracting backgound data, normalizing data, and ”stitching” –
interpolating over non-performing pixels. At the initialization device uses factory calibration (background
and normalization), but you can record a new one using tsRecordBackground() and tsRecordNormalization()
functions or load previously saved one using tsLoadConfig(). Background data are stored for each exposure
separately and selected automatically. The normalization always contains two sets of data — default and
recorded. Default never changes tsRecordNormalization() replaces recorded set; if you never used this function,
the recorded data coincide with the default.

The ”stitching” of isolated non-performing pixels is performed automatically and if there was extended
regions of non-performing pixels during normalization recording (i.e., not all the surface have been illuminated),
you may switch on interpolations over those regions by turning on ”greedy” mode (tsSetGreedy()). It is possible

2

to influence which pixels are considered non-performing by setting threshold parameter with tsSetThreshold().
The meaning of the parameter roughly corresponds to signal-to-noise ratio during calibration. Pixels which
have this value below the set threshold are marked as non-performing.

You can change exposure setting using tsSetExposure(). Change in exposure changes signal amplification and
readout rate. Generally, higher number of the exposure corresponds to higher amplification and lower readout.
Available range of exposures can be found using tsGetExposureRange(). (Important notice: if tsSetExposure()
is called when acquisition is running, there is no guarantee that first frame to be read afterwards would be
obtained with new exposure settings. You may want to dismiss this frame.)

To free resources, call tsStop() when you do no need data, and tsClose() to free the device.

3 Reference

3.1 Types

typedef signed int16 TS ELEMENT
Type for a single data point.

typedef TS ELEMENT * TS DATA
Pointer to a buffer containing data points of a frame.

typedef int TS RES
Type for return codes for functions in the library.

typedef int (*ts ticker t)(double completion)
Type for a ticker callback function being used by tsRecordBackground() and tsRecordNormalization().
Completion parameter varies from 0 (just started) to 1 (finished). The function should return FALSE by
default and TRUE to request abort of the operation.

3.2 Variables

Variables are undefined before the initialization (see tsInit()). All variables are read-only, attempts to assign a
new value will lead to crash!

int sizeX, sizeY Dimensions of the sensor.

int dataLength Total number of data points (dataLength = sizeX ∗ sizeY).

char deviceIDstring Identification string for the device.

3.3 Constants

TS MAX VALUE 1023
Maximum value for a data point.

TS RAW LIMIT 700
The top limit for raw data. This limit is ”soft”, it varies for different pixels – and actual value is within
±1% of TS RAW LIMIT.

3

DEFAULT EXPOSURE 3
Initial setting for the exposure. See tsSetExposure().

DEFAULT THRESHOLD 20
Initial setteing for the threshold. See tsSetThreshold().

3.4 Return codes

Name Value Description

TS OK 0 Success.
TS FAILED -9999 General failure.
TS CANCELLED -9998 Cancelled by user.
TS ERR WRONG PARAMETERS -9997 Invalid parameters (out of range, too long or too

short, etc.).
TS NOTRUNNING -9996 Data acquisition have not been started. (Use

tsStart()).
TS ERR SIZE MISMATCH -9995 Imported data does not fit current configuration.
TS OUTPUT ERROR -9994 File write operation failed.
TS INPUT ERROR -9993 File read operation failed.
TS NOTCONFIGURED -9992 Initialization have not been performed or device have

been closed. (Use tsInit()).
TF PATHNOTFOUND -9991 File opening error - file or path cannot be found or

permissions prevent it fom being opened or file is in
use.

3.5 Functions

TS RES tsInit(void);
Initialize the device. This function should be called prior to any operation with the device, which have to
be connected to the computer. It performs initialization and sets variables sizeX, sizeY, dataLength, and
deviceIDstring.

TS RES tsClose(void);
Close the device. Device can be initialized again by calling tsInit().

TS RES tsStart(void);
Starts data acquisition and processing. The acquisition and processing are performed continuously in
separate threads and results are stored in internal cyclic buffer.

TS RES tsStop(void);
Stops data acquisition and processing, joining corresponding threads. It can take as long as one frame
period at current exposure to return.

int tsIsRunning(void);
Checks whether the acquisition is running. Returns 0 (false) or -1 (true).

4

TS RES tsRead(TS DATA buffer);
Reads processed data into the buffer (the buffer of the size dataLength ∗ sizeof(TSELEMENT) must
be allocated beforehand!). Returned data are between 0 and TS MAX VALUE.
If there are no new data, the function will block until they become available. If acquisition have not been
started, the function will return TS NOTRUNNING.

TS RES tsReadRaw(TS DATA buffer);
//Reads raw (unprocessed) data into the buffer (the buffer of the size dataLength∗sizeof(TSELEMENT)
must be allocated beforehand!). No background compensation and calibration is applied. Returned data
are approximately between TS RAW LIMIT−TS MAX VALUE and TS RAW LIMIT.
If there are no new data, the function will block until they become available. If acquisition have not been
started, the function will return TS NOTRUNNING.

TS RES tsSetExposure(int exposure);
Sets current exposure. Available range can be obtained tsGetExposureRange(). If the aquisition is running
when you use this function, the next frame read with tsRead() or tsReadRaw() may be obtained either
with old, or with new exposure setting. You may wish to dismiss this frame.

int tsGetExposure(void);
Returns current exposure setting.

TS RES tsGetExposureRange(int *pMin, int *pMax);
Gets admissible range of exposures.

double tsGetIntTime(int exposure);
Gets length of the integration time for the given exposure in milliseconds; if parameter is out of range
(i.e., negative), the value for the current exposure is returned. The integration time is proportional to the
amplification factor and is about 1/32 of the frame duration.

TS RES tsSetThreshold(double threshold);
Sets threshold value. The threshold is used to define non-performing pixels for current normalization;
it rougly corresponds to the signal-to-noise ratio during the calibration. Higher threshold means more
non-performing pixels, lower means more noise in resulting data (because more noisy pixels are used).

TS RES tsSetDifference(int on);
Turns on/off difference mode. Non-zero value of parameter will turn it on, zero will turn it off.

TS RES tsSetGreedy(int on);
Turns on/off greedy stitch mode. Non-zero value of parameter will turn it on, zero will turn it off.

TS RES tsRecordBackground(ts ticker t callback);
Records background compensation data. The radiation source should be off. The data are recorded for
all exposures and the procedure will take several minutes. The parameter is a pointer to callback function
which is called periodically to indicate progress. Return value of this function can be used to cancel the
process. Set the parameter to NULL to prevent callbacks.
The recorded data replace default during the session, to use them in subsequent sessions you need to save
and then load config.

5

TS RES tsRecordNormalization(ts ticker t callback);
Records normalization data. The radiation source should be on and it is advisable to record background
data beforehand. The parameter is a pointer to callback function which is called periodically to indicate
progress. Return value of this function can be used to cancel the process. Set the parameter to NULL
to prevent callbacks.
The recorded data replace default during the session, to use them in subsequent sessions you need to save
and then load config.

TS RES tsSelectNorm(int i);
Selects nomaliztion (0 - default, 1 - recorded).

TS RES tsSaveConfig(FILE *stream);
Saves calibration data (i.e. background and normalization) to file. The parameter should be a binary
stream opened for writing.

TS RES tsSaveConfigAs(const char *filename);
TS RES tsSaveConfigAs w(const wchar t *filename);

Helper functions that save configuration to the file indicated by filename. If the file already exists, it is
overwritten silently; if it cannot be open for any reason, functions return TS PATHNOTFOUND. The
first function takes ANSI string as argument, while the second takes wide-character string.

TS RES tsLoadConfig(FILE *stream);
Reads calibration data (i.e. background and normalization) from file. The parameter should be a binary
stream opened for writing. The data read replace default during the session.

TS RES tsLoadConfigFrom(const char *filename);
TS RES tsLoadConfigFrom w(const wchar t *filename);

Helper functions that load configuration from the file indicated by filename. If the file cannot be open for
any reason, functions return TS PATHNOTFOUND. The first function takes ANSI string as argument,
while the second takes wide-character string.

4 Samples

For the expample of a simplest program see included ’sample’ project; the ’simple App’ project contains a little
more elaborate example, which demonstrates repeated read out, changing exposure, and recording background
and normalization.

6

	Directory content
	Introduction
	Reference
	Types
	Variables
	Constants
	Return codes
	Functions

	Samples

