Terahertz Waves Technology

THz technology – Basics

Terahertz (THz) frequency range (0.1 THz — 3 THz) is the last span within the whole electromagnetic wave spectrum, which has not been technologically and commercially developed. Because of that terahertz frequency range is often referred to in the world’s scientific literature as the “terahertz gap”. At the same time it is well known that this frequency range has incredibly fascinating prospects for many applications. THz radiation possesses three unique properties, which stimulate development of the whole terahertz industry. The major advantage of terahertz waves (of sub-terahertz frequency range 0.1 THz — 0.3 THz) is that many materials which block visible and IR spectra, reveal to be transparent in terahertz.

With that said, as compared to microwave radiation, terahertz (or T-ray) frequency range allows to achieve a fairly good spatial resolution required for rendering quality imaging. T-rays are non-ionizing, able to penetrate clothing, polyethylene, polyester and other types of shrouds, covers and enclosures, made of various opaque materials, selectively absorbed by water and organic substances. These unique properties make T-rays much more attractive and informative than X-rays and near infrared radiation (NIR).

The second unique property of THz emission is its harmlessness for biological entities. As opposed to X-rays (Roentgen), terahertz waves have absolutely no ionizing radiation impact, are non-invasive and absolutely safe for humans, animals and plants. Moreover, many substances reveal to have their characteristics spectral lines in the far THz range (1 — 3 THz), which offers unique information about their structure and enables conducting their chemical analysis.

During the last few decades there have been a lot of speculations about terahertz technology, yet not so many really successful breakthroughs have been made. TeraSense tries to bridge “terahertz gap” by developing a special imaging technology.

Terahertz rays (T-rays) are a unique type of electromagnetic radiation indeed, whose great potential is yet to be further developed by human civilization. Many of the existing T-rays devices often use single-pixel detectors, which require ultra-low temperatures of liquid helium. Such T-ray instruments are typically very large, difficult to use, very specialized for a specific narrow applications, and prohibitively expensive.

Many global corporations and research organizations have already invested billions of dollars in creating sources and detectors of T-rays. Many of them are still far away from claiming to have inexpensive and easy-to-manufacture devices, which would be compact, convenient and applicable for use in everyday life, while Terasense “has been there, done that”!

Applications of terahertz technologies

Presently, there are five key fields that are getting transpired as feasible applications for THz imaging systems.

Terahertz quality control

Non-destructive analysis (NDT) of the internal structure of objects (quality control of products). THz cameras enable to visualize the contents of sealed packages or food products under various enclosures.

Terahertz imaging security

Security systems for people screening and luggage scanning. Here the emphasis is primarily made on one feature that unlike X-ray, THz radiation is not detrimental to human body. THz scanners allow remote detection of metallic, plastic, ceramic and other object concealed under clothes — at a distance of a few meters.

Terahertz wireless communication

Building high-frequency wireless telecommunication systems of new generation (up to 100 Gbit/sec). This application holds high promise for high-speed information transmission between electronic devices; building wireless local area networks (WLAN) and wireless personal area networks (WPAN) of new generation, as well as creating entirely secured dedicated channels of wireless communication.

Terahertz imaging in medicine

THz tomography in medicine allows to conduct analysis of the upper layers of a human body — skin, vessels, joints and muscles. There are known successful applications of THz tomography for detecting skin and breast cancers at early stages. Capability of visualizing current conditions of wounds under gypsum/bandage layers also represents high interest.

Terahertz science

Scientific applications of THz radiation include spectroscopy of long-wavelength lattice vibrations of crystals, bending vibrations of molecules. Frequencies of soft modes in ferroelectric materials and frequencies matching the energy of apertures in superconductors are also “residing” within THz range. Terahertz frequency range is convenient for creation and study of meta-materials and plasmonic effects.

There are two application fields that stand out from the rest and can already boast to have employed terahertz systems in world practice. The first field includes high speed conveyor systems of THz imaging for postal office needs (envelopes, packages, parcels etc.)

The second area includes identification of chemical substances based on their characteristic features of their terahertz spectrum in portable Raman spectrometers.

Have any questions? Please contact us.

Your Name
Your E-mail